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ABSTRACT
Thermal building simulation programs, such as

EnergyPlus, approximate solutions of a differential
algebraic system of equations. While the theoreti-
cal solution is usually continuously differentiable in
the building design parameters, the approximate so-
lutions may not even be continuous, due to adaptive
variations in solver iterations and the use of adap-
tive integration meshes. Hence, when a smooth cost
function, defined on the design parameters, is eval-
uated using a thermal building simulation program,
it becomes replaced with an approximation that fails
to be even continuous. Consequently, when used in
conjunction with an optimization algorithm that de-
pends on smoothness of the cost function, the algo-
rithm is quite likely to jam at a non-optimal point.
Obviously, in such situations, the potential economic
gains that optimization offers are not attained.

As an illustration, we present an example, us-
ing the EnergyPlus whole building energy simula-
tion program to evaluate our cost function, in which
the Hooke-Jeeves algorithm terminates at a non-
stationary point. To prevent such failures, we have
developed an adaptive simulation precision control
algorithm that can be used in conjunction with a fam-
ily of derivative free optimization algorithms. The re-
sulting composite algorithms are demonstrably con-
vergent to an exact stationary point. We present the
main ingredients of the composite algorithms and
show by numerical experiments that using coarse ap-
proximations in the early iterations can significantly
reduce the computation time.

INTRODUCTION
We propose a new approach for the optimization

of a cost function f : Rn →R that must be defined on
the solutions of a coupled system of differential alge-
braic equations (DAE). We assume that the coupled
system of DAE has a unique solution which is con-
tinuously differentiable in the design parameter, but
that the solution can only be approximated numer-
ically using computationally expensive simulations.
We assume that the termination criteria of the numer-

ical solvers depend on the design parameters. In this
situation, a computer code for solving these systems
usually defines a numerical approximation function
f ∗(ε, ·), where ε ∈R

q
+ denotes the precision parame-

ter of the DAE solvers, which is discontinuous in the
design parameter. This situation is typical of many
problems in system design, optimal control, system
identification, etc.

In the past, both deterministic nonlinear optimiza-
tion algorithms and probabilistic optimization algo-
rithms have been used heuristically in conjunction
with such approximating functions problems (such as
in Wetter 2001, Wright and Loosemore 2001, Caldas
and Norford 2002). In such situations, determinis-
tic nonlinear optimization algorithms that use fixed
precision function evaluations may yield only par-
tial improvement due to failure far from an optimum
point, and probability based optimization methods
may require a prohibitively large number of function
evaluations to achieve convergence with high prob-
ability. Both of these optimization approaches are
usually employed in conjunction with high precision
function evaluations for all iterations, which results
in long computation time, and little can be said about
their convergence properties.

In this paper, we present a new optimization al-
gorithm that combines a Generalized Pattern Search
(GPS) optimization algorithm (Audet and Dennis
2003) with an adaptive test that determines the pre-
cision with which the cost functions { f ∗(ε, ·)}ε∈R

q
+

must be evaluated. As a result, our algorithm uses
coarse approximations in the early iterations, with
the precision gradually increased as a solution is
approached. Such adaptive schemes are known to
yield significant reductions in computation time (Po-
lak 1997) over fixed precision schemes.

For continuously differentiable cost functions
f (·), our GPS algorithms with adaptive precision
function evaluations construct a sequence of iterates
that converge to stationary accumulation points. We
begin by showing that the cost function f (·) is con-
tinuously differentiable for many problems in build-
ing and HVAC optimization. Then, we explain the
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main ingredients of GPS algorithms. Next we ex-
plain why optimization using fixed precision cost
function evaluations can fail and give an example of
failure. Finally, we state the assumptions on the sim-
ulation model for our method to converge and give an
example of how the cost function evaluation error is
controlled. We close with a numerical example that
uses adaptive precision cost function evaluations.

MINIMIZATION PROBLEM
We will consider problems of the form

min
x∈Rn

f (x), (1)

where f : Rn → R is a once continuously differen-
tiable cost function. For some m, l ∈ N, we assume
that f (·) is of the form

f (x) � F
(
z(x,1)

)
, (2)

where F : Rm → R is a once continuously differen-
tiable function that is defined on the solutions of the
coupled system of differential algebraic (DAE) equa-
tions

dz(x,t)
dt

= h
(
x,µ
)
, t ∈ [0, 1], (3a)

z(x,0) = 0, (3b)

γ
(
x,z(x,t),µ

)
= 0, t ∈ [0, 1], (3c)

where h : Rn ×Rl → Rm and γ : Rn ×Rm ×Rl → Rl

are once continuously differentiable in all arguments.
We assume that (3c) has for all arguments a unique
solution µ ∈ Rl and that the matrix dγ(·, ·,µ)/dµ ∈
Rl×l is non-singular. By using the Implicit Function
Theorem (Polak 1997) and standard theory of differ-
ential equations (Coddington and Levinson 1955), it
can be shown that for all x ∈ Rn and all t ∈ [0, 1], (3)
has a unique, once continuously differentiable solu-
tion z(x,t). Thus, f (x) is once continuously differen-
tiable.

(3) is a typical system of equations that is solved
during a thermal building simulation after the spatial
domain of wall, floor and ceiling constructions has
been discretized in a finite number of nodal points.
For example, the components of the vector z(·, ·) can
be the zonal air temperature, the solid temperature
at the nodal points, and the building energy con-
sumption, and γ(·, ·, ·) can be a system of nonlinear
equations, such as used in describing convective heat
transfer.

For simplicity, we assume (1) is unconstrained.
The case with linear constraints on x is discussed
in Audet and Dennis (2003) and Polak and Wetter
(2003), and constraints on independent parameters
can be added by using barrier or penalty methods as
described in Bertsekas (1999).

We assume that z(x,t) cannot be evaluated ex-
actly, but that it can be approximated by functions
z∗(ε,x,t), z∗ : R

q
+ ×Rn ×R → Rm, where ε ∈ R

q
+

is a vector that contains the precision parameters of
the DAE solvers. For example, given a design pa-
rameter x ∈ Rn, z∗(ε,x,t) is the approximate solu-
tion to z(x,t) of (3) as evaluated by a computer sim-
ulation program with solver precision parameters ε.
Thus, we must define an approximating cost function
f ∗(ε,x) � F(z∗(ε,x,1)) which is in general discon-
tinuous in x.

OPTIMIZATION ALGORITHM
Since f ∗(ε, ·) is discontinuous, f ∗(ε, ·) cannot be

differentiated. Therefore, we will use GPS algo-
rithms, which are derivative-free optimization algo-
rithms. For k ∈ N, let xk ∈ Rn denote the current
iterate. GPS algorithms have in common that they
search for a lower function value than f ∗(ε,xk) on the
points xk±∆k ei, i∈ {1, . . . ,n}, where ∆k is a positive
mesh size factor. Each GPS algorithm has a rule that
selects a finite number of points on a mesh defined
by M(x0,∆k) � {x0 +∆k ei m | i∈ {1, . . . ,n}, m∈Z},
where x0 ∈ Rn denotes the initial iterate. It is this
rule that distinguishes the different GPS algorithms,
such as the Hooke-Jeeves algorithm or the Coordi-
nate Search.

If a point x′ on the mesh M(x0,∆k) with lower cost
than f ∗(ε,xk) has been found, then the search contin-
ues at x′ with the same mesh size factor ∆k. Other-
wise, the search continues at xk with a reduced mesh
size factor ∆k. If ∆k is smaller than a user-specified
limit, the search stops.

Torczon (1997) and Audet and Dennis (2003)
proved that for once continuously differentiable cost
functions that are radially unbounded, any GPS al-
gorithm converges to a point x∗ that satisfies the first
order optimality condition ∇ f (x∗) = 0.

FIXED PRECISION FUNCTION
EVALUATION

We now discuss the situation where the precision
of the approximating cost function f ∗(ε, ·) cannot be
controlled, i.e., ε is fixed for all iterations.

In thermal building simulation programs,
such as in EnergyPlus (Crawley et al. 2001),
TRNSYS (Klein, Duffie, and Beckman 1976),
DOE-2 (Winkelmann et al. 1993), etc., the solvers
for the partial differential equations, the ordinary
differential equations, and the algebraic equations
are implemented in a way that makes it impossible
to establish error bounds for the approximating
solution of the differential equations, and hence, for
the approximating cost function. For example, to
simulate a thermal zone with daylighting control and
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purchased heating and cooling, EnergyPlus uses at
least ten precision parameters, most of which are
fixed at compile time.

For coupled systems of equations, adjusting the
precision parameters independently of each other
can cause divergence. Because of the way in
which building simulation programs are written,
it seems to be impossible to establish a scheme
for adjusting all precision parameters and obtain-
ing an error bound for the approximating solutions
{z∗(ε, ·, ·)}ε∈R

q
+

and hence for the approximating cost

functions { f ∗(ε, ·)}ε∈R
q
+

. Thus, precision control is
not applicable, and ε must be fixed for such systems.

It is common in building simulation programs that
the termination criteria of the solvers depend on x.
Then, a perturbation of x can cause a change in the
sequence of solver iterations, which causes f ∗(ε,x)
to be discontinuous in x. Furthermore, if variable
step size integration methods are used, then the in-
tegration mesh can change from one simulation to
the next. Therefore, part of the change in function
values between different points is caused by a com-
bination of a change in the number of solver itera-
tions and a change in the integration mesh. Conse-
quently, f ∗(ε, ·) is discontinuous, and a descent di-
rection of f ∗(ε, ·) may not be a descent direction for
f (·). Consequently, optimization using fixed preci-
sion function evaluations can fail.

As an example of this, Figure 1 shows the nor-
malized source energy consumption for cooling and
lighting energy from July 1 to July 7 for the office
building presented in Wetter (2001). The compu-
tations were done with EnergyPlus 1.0.2 for Linux.
The independent parameters are the widths of the
west and east windows. The dots show the iteration
steps of the Hooke-Jeeves method, which fails at the
non-optimal point in the left of the figure due to a
discontinuity of f ∗(ε, ·).

Since it does not seem to be possible to control
precision with today’s building simulation programs,
one can only hope to come close to an optimal point
of f (·). The risk of failing at a discontinuity far from
an optimal point can be reduced – but not eliminated
– by selecting a large initial step size ∆0 and using
tight precision ε. However, there is no recipe to say
how large ∆0 should be in general and selecting ε too
small may result in prohibitively long computation
time.

To guarantee convergence to a point x∗ that satis-
fies ∇ f (x∗) = 0, one needs to use adaptive precision
function evaluation as described in the next section.

ADAPTIVE PRECISION FUNCTION
EVALUATION

We will assume that f (·) and its approximating
functions { f ∗(ε, ·)}ε∈R

q
+

have following properties:

Assumption 1
1. We know an error bound function ϕ : R

q
+ → R+

such that for any bounded set S⊂Rn, there exist
an εS ∈ R

q
+ and a scalar KS ∈ (0, ∞) such that

for all x ∈ S and for all ε ∈ R
q
+, with ε < εS

1,

| f ∗(ε,x)− f (x)| ≤ KS ϕ(ε). (4)

Furthermore,

lim
‖ε‖→0

ϕ(ε) = 0. (5)

2. The function f : Rn → R is continuously differ-
entiable. �

The functions { f ∗(ε, ·)}ε∈R
q
+

may be discontinuous.
Notice that we need to know a bound of the function
ϕ(·), but not the constant KS.

Assumption 1 ensures that we can reduce the
approximation error to an arbitrarily small value.
See Brenan, Campbell, and Petzold (1989), Hairer
and Wanner (1996) or Ascher and Petzold (1998) for
numerical methods that generate approximate solu-
tions to (3) for which error bounds can be obtained.

One of the authors is currently developing a ther-
mal building simulation program that allows satisfy-
ing Assumption 1.

Next, we state an assumption on the level sets of
the family of approximating functions. To do so, we
first define the notion of a level set.

Definition 1 (Level Set) Given a function f : Rn →
R and an α ∈ R, such that α ≥ infx∈Rn f (x), we will
say that the set Lα( f ) ⊂ Rn, defined as

Lα( f ) � {x ∈ Rn | f (x) ≤ α}, (6)

is a level set of f (·), parametrized by α. �

Assumption 2 (Compactness of Level Sets) Let
{ f ∗(ε, ·)}ε∈R

q
+

be as in Assumption 1, let x0 ∈ Rn

be the initial iterate, and let ε0 ∈ R
q
+ be the initial

solver precision parameter. We assume that there
exists a compact set C ⊂ Rn such that for all ε ∈ R

q
+,

with ε < ε0,

L f ∗(ε0,x0)
(

f ∗(ε, ·))⊂ C. (7)

�
1For ε ∈ � q, by ε < εS, we mean that εi < εi

S, for all i ∈
{1, ...,q}.
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Last iterations.
No decrease in cost
along coordinate
directions due to a
large discontinuity.

First iterations.

Discontinuities of
cost function.

Domain in which cost
function is differentiable.

Figure 1: Parametric plot of the normalized source energy consumption for cooling and lighting as a function
of the width of the west and east facing window. The dots are iterates of the Hooke-Jeeves algorithm.

Assumption 2 ensures that for a fixed mesh size fac-
tor ∆k, there are only a finite number of mesh points
that are candidates for a decrease in f ∗(ε, ·). There-
fore, the GPS algorithms will reduce the mesh size
factor ∆k after a finite number of iterations.

To control precision of the approximating cost
functions f ∗(·, ·), we need to define a function
ρ : R+ → R

q
+ that assigns the solver precision pa-

rameter ε as a function of the mesh size factor ∆k

for k ∈ N. The function ρ(·) must be such that the
composition ϕ(ρ(·)) is strictly monotone decreasing
and satisfies ϕ(ρ(∆))/∆ → 0, as ∆ → 0.

For example, suppose that ϕ(ε) = ‖ε‖. Then, we
can define ρ(∆) � ∆α ε̂, where ε̂ ∈ R

q
+ is fixed and

α > 1 is used to control how fast the precision is in-
creased. Then,

lim
∆→0

ϕ(ρ(∆))
∆

= lim
∆→0

ϕ(∆α ε̂)
∆

= lim
∆→0

∆α

∆
‖ε̂‖= 0. (8)

In Algorithm 1, we show the implementation of
the Coordinate Search algorithm with adaptive pre-
cision function evaluations. We selected the Coor-
dinate Search algorithm because it is the simplest
member of the family of GPS algorithms and illus-
trates best how the precision control must be imple-
mented. In Polak and Wetter (2003), we show a
generic model GPS algorithm and the implementa-
tion of the Hooke-Jeeves algorithm.

Algorithm 1

Data: Initial iterate x0 ∈ X;
Initial mesh size factor ∆0 ∈ Q, ∆0 > 0.

Maps: Function ρ : R+ → R
q
+ (to assign ε),

such that the composition
ϕ◦ρ : R+ → R+
is strictly monotone decreasing and
ϕ(ρ(∆))/∆ → 0, as ∆ → 0.

Step 0: Initialize k = 0, and ε = ρ(∆0).
Step 1: Search

For i ∈ {1, . . . ,n},
Set x′ = xk + ∆k ei.
If f ∗(ε,x′) < f ∗(ε,xk), go to Step 3.
Set x′ = xk −∆k ei.
If f ∗(ε,x′) < f ∗(ε,xk), go to Step 3.

end for.
Step 2: No improvement found.

Set xk+1 = xk, ∆k+1 = ∆k/2,
ε = ρ(∆k+1), and go to Step 4.

Step 3: Reduced cost.
Set xk+1 = x′, ∆k+1 = ∆k, and
go to Step 4.

Step 4: Replace k by k +1, and go to Step 1.

Polak and Wetter (2003) showed that under
Assumption 1 and Assumption 2 any sequence
of iterates generated by Algorithm 1 contains an
accumulation point x∗ ∈ Rn that satisfies the first
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order optimality condition ∇ f (x∗) = 0. Thus, the
precision control guarantees that GPS algorithms
do not converge to discontinuities of f ∗(ε, ·). An
important feature of the adaptive precision scheme
is the use of coarse approximations in the early iter-
ations, with the approximation precision controlled
by a test. Such an approach leads to substantial time
savings in minimizing computationally expensive
functions.

NUMERICAL EXPERIMENTS
In this section we show how our precision con-

trol algorithm can be used in conjunction with the
Hooke-Jeeves optimization algorithm.

The objective is to fit four parameters of an air-to-
water cooling coil computer simulation model such
that the difference between simulated and measured
coil air outlet temperature is minimal for a prescribed
number of measurement points. The measurement
data are the air and water inlet temperature, the air
humidity ratio, the air and water mass flow, and
the valve position of the throttle valve in the water
circuit. There are 401 measurement data, equally
spaced in time.

Simulation Model

The simulation model consists of a coupled system
of nonlinear equations that is solved for 373 variables
using Newton iterations. The model is static, simu-
lated in SPARK 1.0.3 (LBNL and Ayres Sowell As-
sociates Inc. 2003), and described in Xu and Haves
(2001). For the range of measurement data, all model
equations are once continuously differentiable, and
the Jacobian matrix is non-singular. Therefore, it
follows from the Implicit Function Theorem that the
exact solution is a once continuously differentiable
function.

The design parameters are the air and water side
heat transfer coefficients and two parameters that de-
fine the valve characteristics.

We will control two precision parameters: the pre-
cision parameter for the Newton solver and the num-
ber of simulations that are used in the data fit.

Exact Cost Function

First, we define the exact cost function. Let τ �
[0, 1] denote the normalized time interval over which
the measurement took place. Let Tm : [0, 1] → R be
the linear interpolation of the measured coil air outlet
temperature. For x ∈ Rn and t ∈ τ, let Ts(x,t) ∈ R

denote the exact solution of the system of equations
that define the coil air outlet temperature, obtained
by using linearly interpolated measurement data. For
e(x,t) � |Tm(t)− Ts(x,t)|, we define the exact cost

function

f (x) �
� 1

0
e(x,t)dt. (9)

Approximating Cost Functions

(9) cannot be evaluated because Ts(x,t) can only
be numerically approximated by an approximating
solution T ∗

s (ε,x,t) ∈ R with precision parameter ε ∈
R+, and the integral can only be approximated by a
quadrature formula.

Let ε1 ∈ (0,ε1
0]⊂R+ denote the precision parame-

ter of the Newton solver, and let ε2 ∈ (0,ε2
0]⊂R+ de-

note the time interval for the quadrature formula. In
computing the approximating cost function, we have
two levels of approximations: for t ∈ τ, e(x,t) is ap-
proximated by

e∗(ε,x,t) � |Tm(t)−T∗
s (ε1,x,t)|, (10)

and for 0 < ε2 ≤ ε2
0 ≤ 1 and N(ε) � �1/ε2	, the inte-

gral (9) is approximated for N(ε) > 1 by

f ∗(ε,x) � (11a)
N(ε)−1

∑
i=0

e∗(ε,x, i/N(ε))+ e∗(ε,x,(i+1)/N(ε))
2N(ε)

.

If N(ε) = 1, we want to compute e∗(ε,x, ·) only for
t = 0, and set

f ∗(ε,x) � e∗(ε,x,0). (11b)

It can be shown that there exist a K ∈ (0,∞) and
an ε0 ∈ R2

+ such that

| f ∗(ε,x)− f (x)| ≤ K ‖ε‖, (12)

for all x ∈ Rn and for all ε ∈ R2
+, with ε ≤ ε0. There-

fore, ϕ(·) in Assumption 1 is ϕ(ε) = ‖ε‖.

Precision Control

To control ε∈R2
+, with ε≤ ε0, as a function of the

mesh size factor ∆∈Q+, we introduce ρ : R+ →R2
+,

with elements

ρ1(∆) � min

(
0.1, ε1

min

(
∆

∆min

)α1)
, (13a)

ρ2(∆) �

1, if ∆ = 1,

ε2
min

(
∆

∆min

)α2

, otherwise,
(13b)

where αi > 1, ∆min � mink∈N{∆k} is the mesh size
factor at which the optimization stops (∆min is known
prior to the optimization), and εi

min ∈ (0,εi
0) is the

precision parameter for the last iterations. In (13a),
we prevent ρ1(∆) from being too large since SPARK
does not allow too large a value for ε1 = ρ1(∆).
In (13b), we set ρ2(1) = 1 to use (11b) for the early
iterations.

By (8), ϕ(ρ(∆))/∆ → 0, as ∆ → 0.
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Numerical Results

We will solve (1) using the Hooke-Jeeves opti-
mization algorithm with adaptive precision function
evaluations, where f (·) is approximated by (11), and
ε is controlled using (13). In particular, we use the al-
gorithm GPSHookeJeeves from GenOpt 2.0α (Wet-
ter 2003). The optimization is done for different set-
tings of α (see Table 1). For all adaptive precision op-
timizations, we use εmin = (1E−10,1/400)T , ∆0 = 1
and 4 step reductions in which we set ∆k+1 = ∆k/2.
Hence, ∆min = 1/16, and we use all measurement
data for the last iterations. For the fixed precision
optimization, we set ε = εmin for all iterations.

As a measure of the computation time, we sum the
number of function evaluations in SPARK for all it-
erations. This measure is proportional to the CPU
time, but has the advantage that it is not influenced by
other computation jobs that may run simultaneously.
For our test suite, we normalize this measure against
the number of function evaluations in SPARK for the
case with fixed precision function evaluations. The
computations are done on Linux RedHat 8.0 with an
Intel Pentium III processor.

Table 1 shows the different settings for α, the nor-
malized cost function value and the normalized mea-
sure for the CPU time. The minimum cost function
value differs since the cost function has several local
minima.

On average, our precision control scheme reduces
the CPU time by 77%.

Figure 2 shows, for the optimization with adap-
tive precision function evaluations (with α =
(9.14,1.08)T ) and fixed precision function evalua-
tions, the cost function value as a function of the nor-
malized measure of the CPU time. The horizontal
axis in the right hand side of Figure 2 is logarithmic
for better display of the early iterations. Below the
axis we show when precision is increased (the dif-
ferent precisions are indicated by εk, k ∈ {0, . . . ,4}).
For this example, the precision control algorithm
sets ε0 = (1.0E−01,1)T , ε1 = (1.8E−02,1/42)T ,
ε2 = (3.2E−05,1/89)T , ε3 = (5.6E−08,1/189)T ,
and ε4 = (1.0E−10,1/400)T .

CONCLUSION
Thermal simulation programs construct discon-

tinuous approximations to a usually continuously
differentiable cost function. This can cause op-
timization methods to fail far from an optimal
solution. In such cases, the economic potential that
optimization offers is not utilized. To eliminate
this problem, one needs to use high precision
approximations that may require a prohibitively long
computation time if used for all iterations.

Table 1: Normalized cost function value at optimum
and normalized measure for the CPU time for differ-
ent precision control parameters α. All results are
normalized against the optimization with fixed preci-
sion function evaluations.

normalized
normalized measure of

(α1,α2) cost CPU time
fixed precision 1.00 1.00
(9.14,1.08) 0.92 0.18
(9.14,1.33) 0.95 0.19
(9.14,2.16) 0.97 0.27
(9.14,2.41) 1.04 0.29
(8.30,1.08) 0.92 0.18
(8.30,1.33) 0.95 0.19
(8.30,2.16) 0.97 0.27
(8.30,2.41) 1.04 0.29
(7.47,1.08) 0.92 0.18
(7.47,1.33) 0.95 0.19
(7.47,2.16) 0.97 0.27
(7.47,2.41) 1.04 0.29
(5.81,1.08) 0.92 0.18
(5.81,1.33) 0.95 0.19
(5.81,2.16) 0.97 0.28
(5.81,2.41) 1.04 0.29

average reduction 0.23

We have presented a precision control scheme
that uses low-cost, coarse precision approximations
to the cost function when far from a solution, with
the precision progressively increased as a solution
is approached. For our scheme, convergence to a
first order optimal point of the cost function can be
proven even though the cost function is approxi-
mated by a family of discontinuous functions.

In the presented numerical experiments, our preci-
sion control scheme reduces the computation time by
77%.
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NOMENCLATURE
Conventions

1. Vectors are always column vectors, and their el-
ements are denoted by superscripts.

2. Elements of a set or a sequence are denoted by
subscripts.

3. f (·) denotes a function where (·) stands for the
undesignated variables. f (x) denotes the value
of f (·) for the argument x. f : A → B indicates
that the domain of f (·) is in the space A, and
that the image of f (·) is in the space B.

4. We say that a function f : Rn → R is once
continuously differentiable if f (·) is defined on
Rn, and if f (·) has a continuous derivative on
Rn.

Symbols

f (·) cost function
f ∗(·, ·) approximating cost function
n dimension of the independent parame-

ter
q dimension of the precision parameter

of the numerical solvers
t time
x independent parameter
α parameter to control how fast precision

is increased
∆k mesh size factor at k-th iteration
a ∈ A a is an element of A
A ⊂ B A is a subset of B
N {0,1,2, . . .}
Q set of rational numbers
Q+ {q ∈ Q | q > 0}
R set of real numbers
R

q
+ {x ∈ Rq | xi > 0, i ∈ {1, . . . ,q}}

Z {. . . ,−2,−1,0,1,2, . . .}
�s	 max{k ∈ N | k ≤ s}
� equal by definition
ei unit vector along the i-th coordinate di-

rection
‖x‖ L2 norm of x ∈ Rn, defined as ‖x‖ �(

∑n
i=1(x

i)2
)1/2
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